Course: CEG 4104: Retaining Wall and Embankment Design (6131)
CEG 6515: Earth Retaining Systems and Slope Stability (0846, EDGE)

Time & Place: 3rd Period (9:35 - 10:25 A.M.) Monday, Wednesday, and Friday
E122 Computer Science and Engineering Building (CSE)

Instructor: Dr. D. R. Hiltunen
265G Weil Hall
392-9537 × 1468 and dhilt@ce.ufl.edu

Office Hours: 1:00 – 3:00 P.M. Monday, Wednesday, and Friday

Prerequisites: CEG 4011, CEG 4012

Course objectives and/or goals: See instructor.

Grading:*

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam No. 1</td>
<td>25%</td>
</tr>
<tr>
<td>Exam No. 2</td>
<td>25%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>35%</td>
</tr>
<tr>
<td>Homework</td>
<td>15%</td>
</tr>
</tbody>
</table>

* Notes on grading:

1. Homework assignments will typically be due at beginning of class period, and before lecture begins. Solutions submitted after this time will receive a 10 percent deduction per day late, and no solutions will be accepted after one week. Prepare all homework solutions on one side of sheet only (no spiral bound paper) and staple all pages together.
2. Questions, comments, etc. regarding the grading of exams or homework assignments must be submitted to the instructor within 48 hours (excluding weekends and holidays) of their return, after which time the discussion is closed.

3. Homework solutions will be made available on E-Learning course management system.

Grade Points: Undergraduate students, in order to graduate, must have an overall GPA and an upper-division GPA of 2.0 or better (C or better). Note: a C– average is equivalent to a GPA of 1.67, and therefore, it does not satisfy this graduation requirement. Graduate students, in order to graduate, must have an overall GPA of 3.0 or better (B or better). Note: a B– average is equivalent to a GPA of 2.67, and therefore, it does not satisfy this graduation requirement. For more information on grades and grading policies, please visit:

Attendance policy: See instructor.

Make-up of exams or other work: See instructor.

Accommodation for Students with Disabilities: Students requesting classroom accommodation must first register with the Dean of Students Office. The Dean of Students Office will provide documentation to the student who must then provide this documentation to the Instructor when requesting accommodation.
<table>
<thead>
<tr>
<th>Class No.</th>
<th>Day</th>
<th>Date</th>
<th>Topic</th>
<th>Suggested Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>1-07</td>
<td>Introduction: Schedule, Policies, Content</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>1-09</td>
<td>Lateral Earth Pressure: At-Rest, Active</td>
<td>pp. 446-450</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1-11</td>
<td>Lateral Earth Pressure: Passive, Coulomb</td>
<td>pp. 450-460</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>1-14</td>
<td>Lateral Earth Pressure: Coulomb, Rankine</td>
<td>pp. 367-368 (B08)</td>
</tr>
<tr>
<td>5</td>
<td>W</td>
<td>1-16</td>
<td>Lateral Earth Pressure: Additional Factors</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>1-18</td>
<td>Retaining Walls: External Stability</td>
<td>pp. 465-472</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>1-21</td>
<td>Martin Luther King Day, No Class</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>W</td>
<td>1-23</td>
<td>Retaining Walls: Gravity</td>
<td>pp. 472-476</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>1-25</td>
<td>Retaining Walls: Gravity</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>1-28</td>
<td>Retaining Walls: Gravity</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>W</td>
<td>1-30</td>
<td>Retaining Walls: Cantilever</td>
<td>pp. 476-479, 510-513</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>2-01</td>
<td>Retaining Walls: MSE: Geosynthetics</td>
<td>pp. 500-501</td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>2-04</td>
<td>Retaining Walls: MSE: Internal Stability</td>
<td>pp. 502-509</td>
</tr>
<tr>
<td>14</td>
<td>W</td>
<td>2-06</td>
<td>Retaining Walls: MSE: Internal Stability</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>F</td>
<td>2-08</td>
<td>Exam No. 1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>M</td>
<td>2-11</td>
<td>Retaining Walls: MSE: Internal Stability</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>W</td>
<td>2-13</td>
<td>Retaining Walls: MSE: Internal Stability</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>F</td>
<td>2-15</td>
<td>Sheet-Pile Walls: Applications, Types, Criteria</td>
<td>pp. 479-484</td>
</tr>
<tr>
<td>19</td>
<td>M</td>
<td>2-18</td>
<td>Sheet-Pile Walls: Cantilever</td>
<td>pp. 484-485</td>
</tr>
<tr>
<td>20</td>
<td>W</td>
<td>2-20</td>
<td>Sheet-Pile Walls: Cantilever</td>
<td>pp. 487-491</td>
</tr>
<tr>
<td>21</td>
<td>F</td>
<td>2-22</td>
<td>Sheet-Pile Walls: Cantilever</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>M</td>
<td>2-25</td>
<td>Anchored and Braced Walls: Applications, Types</td>
<td>pp. 496-500</td>
</tr>
<tr>
<td>23</td>
<td>W</td>
<td>2-27</td>
<td>Anchored and Braced Walls: Construction</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>F</td>
<td>3-01</td>
<td>Anchored and Braced Walls: Pressure Diagrams</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Spring Break, No Class</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>M</td>
<td>3-11</td>
<td>Anchored and Braced Walls: Anchor Loads</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>W</td>
<td>3-13</td>
<td>Anchored and Braced Walls: Anchor Loads</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>F</td>
<td>3-15</td>
<td>Anchored and Braced Walls: Bottom Stability</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>M</td>
<td>3-18</td>
<td>Anchored and Braced Walls: Bottom Stability</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>W</td>
<td>3-20</td>
<td>Soil Nailing</td>
<td>pp. 441-445 (B08)</td>
</tr>
<tr>
<td>30</td>
<td>F</td>
<td>3-22</td>
<td>Exam No. 2</td>
<td></td>
</tr>
<tr>
<td>Class No.</td>
<td>Day</td>
<td>Date</td>
<td>Topic</td>
<td>Suggested Reading</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>31</td>
<td>M</td>
<td>3-25</td>
<td>Soil Nailing</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>W</td>
<td>3-27</td>
<td>Soil Nailing</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>F</td>
<td>3-29</td>
<td>Slope Stability: Intro, Infinite</td>
<td>pp. 522-533</td>
</tr>
<tr>
<td>34</td>
<td>M</td>
<td>4-01</td>
<td>Slope Stability: Infinite, Planar</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>W</td>
<td>4-03</td>
<td>Slope Stability: Planar</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>F</td>
<td>4-05</td>
<td>Slope Stability: Planar</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>M</td>
<td>4-08</td>
<td>Slope Stability: Circular: Mass</td>
<td>pp. 533-536</td>
</tr>
<tr>
<td>38</td>
<td>W</td>
<td>4-10</td>
<td>Slope Stability: Circular: Slices</td>
<td>pp. 550-553</td>
</tr>
<tr>
<td>39</td>
<td>F</td>
<td>4-12</td>
<td>Slope Stability: Circular: Slices</td>
<td>pp. 536-550</td>
</tr>
<tr>
<td>40</td>
<td>M</td>
<td>4-15</td>
<td>Slope Stability: Circular: Slices</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>W</td>
<td>4-17</td>
<td>Slope Stability: Circular: SLOPE/W</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>F</td>
<td>4-19</td>
<td>Slope Stability: Circular: SLOPE/W</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>M</td>
<td>4-22</td>
<td>Slope Stability: Circular: SLOPE/W</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>W</td>
<td>4-24</td>
<td>Course Wrap Up: Evaluation, Final Exam</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>F</td>
<td>5-03</td>
<td>Final Exam, 7:30-9:30 A.M.</td>
<td></td>
</tr>
</tbody>
</table>
1. Introduction (1)
 a. Schedule
 b. Assignments, Exams, Grading Policies
 c. WebCT, Ereserves
 d. Content
 i. Soil
 1. Particulate
 2. Weak
 3. Soft and compressible
 4. Nonhomogeneous
 ii. Geotechnical design elements: foundations, retaining systems
 iii. Lateral earth pressure
 iv. Retaining walls: gravity, cantilever, mechanically (internally) stabilized
 v. Excavations: open, braced, bottom stability
 vi. Sheet pile walls: cantilever, anchored
 vii. Earth mass stability: natural slopes, embankments, earth dams

2. Lateral Earth Pressure (4)
 a. Introduction
 i. Applications
 ii. \(\sigma_h' \)
 iii. \(K \)
 b. States of Equilibrium
 i. \(K_0 \)
 ii. \(K_a \)
 iii. \(K_p \)
 c. Earth Pressure Theories
 i. Purpose
 ii. Coulomb
 1. Schematic
 2. Assumptions
 3. Free body diagram and equilibrium
 4. Highlights of equation derivation
 5. Results
 iii. Rankine
 iv. Others, e.g., log spiral, Culman
 d. Additional Factors
 i. Ground water table
 ii. Layered soil profile
 iii. Surcharge

3. Retaining Walls (11)
 a. Introduction
 i. Types: gravity, cantilever, MSE, other
 ii. Design criteria
 1. External: sliding, overturning, bearing capacity
 2. Internal: tensile strength, pullout
 iii. Design process
b. Gravity Walls (4)
 i. Free body diagrams
 ii. Overall stability: sliding, overturning, bearing capacity
 iii. Example

c. Cantilever Walls (2)
 i. Free body diagram
 ii. Overall stability: sliding, overturning, bearing capacity
 iii. Structural design: stem, heel, toe
 iv. Example

d. Mechanically-Stabilized Earth (MSE) Walls (5)
 i. Introduction
 1. Wall concept
 2. Reinforcement alternatives
 3. Geosynthetics
 ii. Design Criteria
 1. Internal: tensile strength, pullout resistance
 2. External: sliding, overturning, bearing capacity
 iii. Design Methodology
 1. Properties and parameters
 a. Geometry
 b. Soil properties
 c. Reinforcement properties
 d. Factors of safety
 e. Earth pressure theory
 2. Internal stability
 a. Tensile strength factor of safety >> vertical spacing
 b. Pullout factor of safety >> design length
 3. External stability
 a. FBD
 b. Sliding factor of safety >> design length at base
 c. Overturning
 d. Bearing capacity

4. Excavations (5)
 a. Stability of Unsupported (1.5)
 i. Planar failure surface
 1. Rankine analysis: upper bound solution
 2. Terzaghi
 a. \(y=zo \): lower bound
 b. \(y=Hc/2 \): observation
 ii. Other failure surfaces
 b. Braced (3.5)
 i. Introduction
 1. Strategies
 2. Simple, approximate analysis for strut loads, etc.
ii. Apparent pressure distributions
 1. Different than retaining walls since deformation pattern is different
 2. Total area approximates resultant load on braced wall

iii. Strut loads

iv. Bottom stability
 1. Heave in clays
 2. Quick condition in sands below GWT

v. Flowchart
 1. Cohesionless: pressure, strut loads, quick if below GWT
 2. Stiff clays: pressure, strut loads
 3. Soft clays: heave, pressure, strut loads

5. Sheet-Pile Walls (9)
 a. Introduction
 i. Applications
 ii. Material Types
 iii. Design/Construction Methods: Cantilever, Anchored
 b. Cantilever Wall in Cohesionless Soil
 i. Soil/wall model
 ii. Free body diagram
 iii. Net pressure diagram
 iv. Example: design steps
 c. Anchored Wall in Cohesionless Soil
 i. Soil/wall model
 ii. Free body diagram
 iii. Net pressure diagram
 iv. Example: design steps
 d. Anchors
 i. Types
 ii. Placement
 iii. Design Methods
 1. Teng
 2. Ovesen and Stromann
 iv. Example

6. Earth Mass Stability: Natural Slopes and Embankments (10)
 a. Introduction
 i. Types of Slope Failures
 ii. Causes of Slope Failures
 iii. Definition of Stability
 iv. Methods of Analysis
 1. Limiting Equilibrium
 2. Finite Element
 b. Infinite Slopes
 c. Finite Slopes
 i. Planar
ii. Circular
 1. Mass stability charts for homogeneous slopes
 a. Taylor
 b. Cousins
 2. Method of slices

d. SLOPE/W
 i. Introduction
 1. Geo-Slope Website
 2. GeoStudio
 3. Student Download
 4. Tutorial video
 ii. Overview of Capabilities: Examples
 iii. Problem Definition: Define
 1. Layout: scale, grid
 2. Geometry
 3. Material Properties
 4. Pore Water
 5. Reinforcement
 6. Slip Surface Definition
 7. Calculation Methods
 8. Verify
 iv. Analysis: Solve
 v. Results: Contour